Теоретические основы электротехники

Математика
Решение примерного варианта
контрольной работы
Матричные уравнения
Сложение матриц
Теория делимости квадратных матриц
Эквивалентные матрицы
Матричные уравнения
Написать матрицу, транспонированную
данным
Разложить матрицу в произведение простейших
Предел последовательности
Вычислить пределы с помощью правила Лопиталя
Неопределенный интеграл
Определенный интеграл
Вычислить определенные интегралы
Двойной интеграл
ОДУ первого порядка
Вычислить интегралы от функции комплексного
переменного
Изменить порядок интегрирования в интеграле
Вычислить криволинейный интеграла
Вычислить расходимость (дивергенцию)
и вихрь (ротор)
Исследовать поведение функции
Найти интеграл 
Площадь плоской криволинейной трапеции
Вычисление длины дуги кривой
Тройной интеграл в цилиндрических и
сферических координатах
Декартовы координаты
Сферические координаты
Вычислим тройной интеграл
Вычисление двойного интеграла в
декартовых координатах
Двойной интеграл в полярных координатах
Приложения тройного интеграла
Тройной интеграл в декартовых координатах
Тройной интеграл в сферических координатах
Тройной интеграл в цилиндрических координатах
Вычисление криволинейных интегралов 1-го рода
Криволинейный интеграл II рода (по координатам)
Поверхностный интеграл первого рода
Поверхностный интеграл второго рода
Функция нескольких переменных
Локальные максимумы и минимумы ФНП
Векторное поле
Соленоидальное векторное поле
Теоретические основы электротехники
Порядок выполнения и требования
к оформлению - расчётно – графических заданий
Расчёт магнитной цепи
Законы Кирхгофа и расчёт резистивных
электрических цепей
Пример выполнения расчётно – графического
задания
Расчёт линейных электрических цепей
Расчёт трёхфазных электрических цепей
Формирование уравнений сложных
r,L,C - цепей
Энергетика
Экология энергетики
Информатика
Курс лекций
Локальные компьютерные сети
Физика
Примеры решения задач
Машиностроительное черчение
Сборочный чертеж
Обозначение материалов
Построение лекальных кривых
Геометрические построения
Правила нанесения размеров
Последовательность нанесения размеров
Позиционные задачи
Решение метрических задач
 

 

Сборник включает задания по дисциплине «Теоретические основы электротехники», являющейся базовой для специальности – электроснабжение промышленных предприятий. Содержание сборника отражает коллективный опыт преподавания курса ТОЭ на кафедре Электроснабжения промышленных предприятий. Учтён также опыт кафедр, теоретических основ электротехники и теории электрических цепей ведущих электротехнических вузов страны. Материал, используемый при составлении заданий, соответствует разделам действующей программы дисциплины «Теоретическая электротехника» для высших учебных заведений.

Расчёт электрического поля, усилий, энергии и электрических параметров простейших конструкций Целью задания является закрепление теоретического материала, излагаемого в первой части курса – физические основы электротехники (ФОЭ). Теоретическая часть расчётов базируется на уравнениях поля в интегральной форме. Особенности конструкций элементов (сферическая и цилиндрическая симметрия) существенно упрощают расчётную часть и позволяют при выполнении задания сосредоточить внимание на физической стороне процессов.

Пример выполнения задания

Расчёт полной электрической энергии конденсатора

Определение выражения для электрической ёмкости конденсатора на единицу длины

Источник ЭДС и источник тока При преобразовании любого вида энергии в электрическую энергию в источниках происходит за счет электродвижущей силы (ЭДС).

Расчёт магнитной цепи с магнитопроводом постоянной магнитной проницаемости Целью задания является закрепление теоретического материала, изложенного в первой части курса – физические основы электротехники (ФОЭ). Теоретическая часть расчётов базируется на интегральных понятиях магнитной цепи: магнитном потоке, магнитном напряжении, магнитодвижущей силе (м.д.с.) и других. Предлагается линейный вариант магнитной цепи, т.е. пренебрегается зависимостью магнитной проницаемости среды (ферромагнитного материала) от напряжённости магнитного поля. Основы молекулярной физики и термодинамики Курс лекций по физике

Пример выполнения расчётно-графического задания

Законы Кирхгофа и расчёт резистивных электрических цепей Целью задания является закрепление теоретического материала, излагаемого в первой части курса – в разделе « методы расчёта линейных электрических цепей». Заданием предусмотрена отработка расчётных приёмов, основанных на использовании: законов Кирхгофа, принципа наложения, сворачивания цепей со смешанными соединениями ветвей, простейших преобразований резистивных цепей, а так же расчёта резистивных цепей методами контурных токов, узловых напряжений и эквивалентного генератора. Метод активного двухполюсника Теория электрических цепей

Второй закон Кирхгофа

Преобразования схемы звезда треугольник

Принцип наложения

Метод узловых напряжений При расчёте цепи методом узловых напряжений неизвестными в системе уравнений будут узловые напряжения uk0 (иногда обозначается одним индексом uk), равные разности потенциалов k-го и нулевого (базисного) узлов. Потенциал нулевого узла принимается равным нулю, а номер выбирается произвольно. Число неизвестных и уравнений должно быть равно числу узлов цепи минус единица.

Метод эквивалентного генератора.

Пример выполнения расчётно – графического задания

Пример выполнения расчётно – графического задания часть 2

Расчет методом контурных токов

Расчет методом узловых напряжений Цепь содержит 4 узла, следовательно, система уравнений по методу узловых напряжений должна состоять из трёх уравнений. Однако, в конкретной схеме при определении коэффициентов неизбежно возникнет трудность. Существо её в том, что ветвь с идеальным источником напряжения имеет нулевое сопротивление, т.е. бесконечно большую проводимость

Расчет методом эквивалентного генератора

Расчет методом наложения Найдём частичные токи через сопротивление r1, от каждого источника в отдельности, заменяя исключённые источники их внутренними сопротивлениями.

Расчёт линейных электрических цепей при гармоническом (синусоидальном) воздействии

Основные законы электрических цепей в комплексной форме

Баланс активных мощностей Целью задания является отработка техники расчёта гармонических установившихся режимов в линейных электрических цепях, закрепление теоретического материала в части применения комплексного метода и построения векторных диаграмм гармонического процесса. Заданием предусмотрена отработка расчётных приёмов сворачивания цепи со смешанным соединением r,L,C – элементов к одному эквивалентному параметру (комплексным сопротивлению или проводимости). Задание содержит проверку баланса активных и реактивных мощностей.

Пример выполнения расчётно-графического задания

Определение полного тока

Построить в выбранных масштабах для тока и напряжения векторные диаграммы

Баланс активных и реактивных мощностей

Расчёт трёхфазных электрических цепей Расчётно-графическое задание предназначено для закрепления теоретического материала по теме «многофазные электрические цепи». Целью задания является отработка техники расчёта симметричных и несимметричных, гармонических, установившихся режимов в трёхфазных электрических цепях. Задание так же содержит расчёт активных и реактивных мощностей трёхфазных приёмников электрической энергии.

Пример выполнения расчётно-графического задания

Топографическая диаграмма напряжений

Формирование уравнений сложных r,L,C - цепей . и расчёт установившегося гармонического (синусоидального) режима В задание включены задачи для расчёта электрических цепей сложной конфигурации с синусоидальными источниками электрической энергии. Целью задания является отработка расчётных приёмов, подробно рассмотренных в предыдущих заданиях, в частности, задания №4 в части использования комплексного метода расчёта электрических цепей. Топология цепей в задании соответствует топологии цепей в задании №3, но кроме резистивных элементов цепи содержат индуктивности и ёмкости.

Метод узловых напряжений Метод эквивалентного генератора Идея метода достаточно подробно изложена в РГЗ №3. Как и при использовании метода контурных токов, применение метода узловых напряжений для расчёта гармонического режима требует записи всех уравнений в комплексной форме.

Метод контурных токов пример выполнения задания

Решить задачу методом узловых напряжений Цепь содержит 4 узла, следовательно, система уравнений по методу узловых напряжений должна состоять из трёх уравнений. Однако, в схеме на рис. 6.4 есть ветвь с идеальным источником напряжения, который имеет нулевое сопротивление, т.е. бесконечно большую проводимость.

Решить задачу методом эквивалентного генератора

Введение в экологию энергетики