Экологические проблемы энергетики

Энергетика
Ядерная энергетика.
Водородная энергетика
Основные способы получения энергии
Первая в мире атомная электростанция.
Радиоактивные вещества
Альфа-излучение
Нормы радиационной безопасности
Потенциальные аварийные ситуациина АЭС
Системы автоматизированного контроляв районе АЭС
Сущность экологического аспекта в энергетике
Влияние вредных выбросов электростанций
Обобщение перспектив развития природоохранных технологий
Экологические проблемы производства энергии

Проблема теплового загрязнения

Локальное тепловое загрязнение окружающей среды. Основное количество тепловой энергии на ТЭС и ТЭЦ поступает в окружающую среду на стадии конденсации пара, около 50-55% от тепловой энергии, выделяемой при сгорании топлива. На АЭС эта величина ещё больше и составляет для ВВЭР (водо-водяных реакторов) 65-68% от общей тепловой энергии, вырабатываемой в реакторе. В настоящее время наиболее распространённым хладоагентом при конденсации пара на ТЭС и АЭС является вода системы технического водоснабжения (СТВС). При прямоточной СТВС теплота конденсации передаётся проточной воде рек или озёр. При организации замкнутых СТВС тепло передаётся циркуляционной воде, охлаждаемой в замкнутых прудах-охладителях или градирнях.

При организации прямоточных СТВС во избежание необратимых экологических изменений в водоёмах и в соответствии с санитарными нормами, повышение температуры водоёмов не должно превышать 5оС в зимнее время и 3оС летом. Эти нормы могут быть выдержаны, если удельная нагрузка на водоём не будет превышать 12-17 кДж/м3 сбрасываемой тепловой энергии. Это накладывает серьёзные ограничения на возможности использования прямоточных СТВС, которые являются, с экономической точки зрения, самыми дешёвыми. Анализ водного баланса Европейской части РФ показывает, что в данном районе возможности применения прямоточной СТВС практически исчерпаны.

При организации оборотной СТВС с охлаждением воды в градирнях практически всё тепло, забираемое водой при конденсации пара, передаётся атмосферному воздуху. Однако в связи со значительным испарением воды в градирнях, эти системы нуждаются в постоянной подпитке свежей водой. На АЭС, имеющих оборотные СТВС с градирнями, на каждые 1000 МВт мощности станции требуется 0,8-1,2 м3 воды каждую секунду. Помимо этого, недостаточно изучено влияние градирен на микроклимат и атмосферные явления. Организация оборотных СТВС возможна и при естественном охлаждении воды в прудах-охладителях. В последнее время для этих целей на новых электростанциях широко используются акватории существующих водохранилищ комплексного назначения. При этом, в целях экономии земельных и водных ресурсов и предотвращения влияния сбросного тепла на гидробиологический режим водохранилища, акватория, используемая для охлаждения, отделяется от остального водохранилища ограждающей дамбой. В настоящее время около 80% действующих ТЭС и АЭС имеют оборотные СТВС, причём около 56% всех электростанций оборудованы системами с водохранилищами-охладителями, 22% оборудованы градирнями и только 22% электростанций имеют прямоточные СТВС.

Проводятся работы по совершенствованию и применению воздушно-конденсационных установок охлаждения (ВКУ). Подобные установки используются, например, на Билибинской АЭС. При низких температурах окружающего воздуха ВКУ работает очень надёжно, однако в летнее время при температуре воздуха выше 25-27оС работа энергоблока с номинальной мощностью оказывается невозможной, именно это и высокая стоимость ВКУ сдерживают их широкое распространение. 

Глобальное тепловое загрязнение, вызывающее нарушение устойчивости биосферы Земли. Особую роль в нарушении устойчивости биосферы играет непрерывный рост производства и потребления энергии, а любое ее использование в конечном итоге приводит к рассеиванию и появлению на поверхности Земли дополнительных источников тепла.

Загрязнение атмосферы, водной среды и поверхности (суши) различными токсичными веществами безусловно оказывает пагубное влияние на биосферу, но эти процессы более управляемы. Уже существующие технические средства позволяют решать большинство этих проблем (вопрос в цене и времени). Потерю же тепла, рассеивание можно уменьшить, но избежать невозможно, этому препятствуют законы природы.

Многолетние метеорологические  наблюдения достоверно показывают, что на территориях, испытывающих большую антропогенную нагрузку, и в прилегающих к ним районах климатические и погодные условия за последние 100 лет изменились значительно. К тому же наблюдается рост опасных гидрометеорологических явлений (рис.15.21).

Рис. 15.21. Рост суммарного числа случаев опасных гидрометеорологических явлений за 1991 – 2005 гг.

 Если рассмотрение глобального потепления только в качестве последствия антропогенной деятельности вызывает ряд возражений (и справедливых, например, по геоклиматическим причинам), то локальные изменения климата и погоды безусловно в большинстве случаев являются результатом техногенной нагрузки.

Суммарная мощность всех антропогенных источников энергии в настоящее время около 1010 кВт.  Эта величина составляет ничтожную часть энергии, излучаемой от Солнца, и энергии движения и вращения Земли, но она уже сопоставима (0,1%) с энергией процессов, осуществляющихся на планете, в атмосфере и океане и обуславливающих разнообразие климата и погоды на земном шаре. Мощность потока солнечной энергии достигающей земной поверхности составляет около 1013 кВт.

Все крупномасштабные явления на поверхности Земли (мощные циклоны, извержения вулканов, процесс глобального фотосинтеза), как правило, имеют суммарную энергию, не превышающую 1% от энергии солнечного излучения, попадающего на поверхность планеты. Выход энергии за это значение может привести к существенным аномалиям - резким климатическим отклонениям,  переменам в характере растительности (и биоты в целом), крупным лесным и степным пожарам и т.д.

Прогноз развития мирового энергопотребления показывает, что уже к 2040 г. суммарная мощность антропогенных источников достигнет 1% от энергии Солнца на поверхности Земли, а это уже чревато серьёзным нарушением глобального экологического равновесия.

Проблема усугубляется ещё тем, что большая часть  энергии производится путём сжигания ископаемого органического топлива (уголь, нефть, газ) с образованием значительного количества «парниковых» газов (в основном  СО2), которые сами влияют на глобальное потепление.

Известно также, что мощности тепловых потоков, выделяемых промышленными и городскими агломерациями, уже влияют на локальное изменение циркуляции атмосферы (в том числе изменяя температуру воздуха и количество осадков).

В основном подобные явления со временем и расстоянием от источника затухают, а их энергия рассеивается. Но может вступить в действие и обратная связь. В этом случае возникает самоподдерживающаяся цепная реакция, и незначительное событие может послужить толчком, который, обладая триггерным эффектом, приведёт в действие явления значительно большего, по сравнении с ним, масштаба. Так многие климатологи считает, что глобальное потепление может приводить к учащению ураганов или, по крайней мере, к возрастанию их интенсивности. Таким образом, может создаться положительная обратная связь: возникновение урагана будет способствовать формированию новых ураганов. Имеются серьёзные наблюдения в поддержку этого утверждения.

Состояние и перспективы российской энергетики

Основная проблема российской энергетики на сегодняшний день – недопустимо высокий физический износ основных фондов. В электроэнергетике доля физически изношенного оборудования превысила 50%, а в нефтепереработке – 80%. Продление срока службы агрегатов электростанций с расчётных 30 до сверхнормативных 50 лет за счёт «латания дыр» без ввода новых компенсирующих мощностей приводит лишь к дорогостоящим ремонтным затратам и угрозе массового выхода оборудования из строя (печальный пример – Саяно-Шушинская ГРЭС).

Даже в сравнительно благополучной газовой промышленности через 5-10 лет наступит период одновременного исчерпания физического ресурса газопроводов страны, введённых ещё в начале 60-х годов.

Другая серьёзнейшая проблема – необходимость структурной перестройки всего топливно-энергетического комплекса (ТЭК) страны. Доля ТЭК в общем объёме продукции возросла с 24% в 1990 г. до 40% в 1998 г. и продолжает увеличиваться; доля энергоносителей в экспортной части баланса достигла 46,5%, а в доходной части бюджета – примерно 40%. Можно и нужно говорить о возросшей зависимости экономики России от состояния этой отрасли.

В структуре потребления энергоресурсов России удельный вес газа в настоящее время вырос до 50%, а в котельно-печном топли­ве до – 68,3%. В таких промышленно развитых регионах России, как в Поволжском, Центральном, Северо-Кавказском и Северо­-Западном, за счет сокращения использования мазута и угля в 2 раза доля газа в котельно-печном топливе достигла 77-83%. В Моск­ве этот показатель уже превышает 95%.

По соображениям устойчивости  снабжения топливом и энергети­ческой безопасности дальнейшая ориентация на опережающий рост газопотребления является рискованной мерой. Любой сбой в работе газовой отрасли может привести в ко­нечном итоге к энергетическому кризису и нарушению безопас­ности страны. Покрыть все потребности России в топливе только за счёт поставок газа невозможно. Необходимо привлекать к широкому использованию и другие виды топливно-энергетических ресурсов.

В США, Италии, Канаде и Англии доля газа в потреблении первичных топливно-энергетических ресурсов не превышает 30%, а во Франции и Германии – даже ниже 20%. В этих странах имеются возможности практического увеличения газопотребления, но они сдерживаются на государственном уровне с целью обеспече­ния надежности энергопотребления (хотя имеется и политическая составляющая) и снижения риска возникно­вения энергетического кризиса.

Всё это сложилось потому, что соотношение цен на газ, мазут и уголь в России не соответ­ствует реальной стоимости энергоресурсов и действующему соот­ношению таких цен за рубежом. Цены на газ на внутреннем рын­ке (в расчёте на 1 условную тонну) ниже цен на мазут в 3 раза, угля – в 1,6 раза, и в 8–12 раз ниже, чем в странах Европы и Америки.

Не маловажной причиной перехода энергетики на газ в Европейской части страны (и в Москве особенно) послужили и экологические соображения. Как уже отмечалось, загрязнение атмосферы при использовании газа составляет 1%, а мазута – 10% от выброса токсичных веществ в атмосферу при сжигании угля. В ближайшие десятилетия наша энергетика, кроме очевидной структурной перестройки и ускоренного ввода новых мощностей, должна уделить особое внимание повышению эффективности использования первичных энергетических ресурсов и экологическим последствиям, прежде всего при использовании угля.

Освоение новых эффективных технологий сжигания топлива является основной стратегической задачей, от решения которой в значительной мере зависит экономичность, экологическая чистота и надёжность функционирования ТЭК.

Уже сейчас в России имеются энергоблоки сверхкритических параметров пара (24 МПа и 5400С), достаточно надёжно работающие и обеспечивающие КПД при сжигании угля порядка 37-38% и 39-40% при использовании газа.

Разрабатываются блоки мощностью 300 МВт и более с эффективностью 43-45%. Рост давления пара с 24-25 до 30-32 МПа и температуры его перегрева с 540 до 580-6200С даёт снижение расхода топлива на 4-6%. В настоящее время на получение 1 кВтч электрической энергии расходуется около 490 г у. т.

Сейчас на ТЭС в промышленно развитых странах мира КПД современных энергоблоков на угле достигает 43%, планируется его дальнейшее повышение до 47-48%, в том числе за счёт дальнейшего повышения параметров пара.

Весьма перспективны газотурбинные когенерационные технологии, позволяющие повысить эффективность использования газа до 80% при расходе 200 г у.т./(кВтч).

Для удовлетворения экологических требований должны применятся технологические методы, снижающие образование оксидов азота до 200-250 мг/м3 при сжигании бурых углей, до 300-400 мг/м3 – каменных, до 500-600 мг/м3 – тощих, с жидким шлакоудалением. Эти блоки должны быть оснащены высокоэффективными электрофильтрами с КПД 99,5%, а при необходимости – системой удаления оксидов серы и азота.

В связи с тем, что ТЭС, расположенные в Европейской части России, потребляют от 77 до 79,5% природного газа, поставляемого в энергетику, при замещении газа твёрдым топливом в этом регионе особенно остро встанут экологические, экономические и технические вопросы.

Анализ коэффициентов эмиссии СО2 показывает, что при пе­реходе ТЭС на сжигание твердого топлива вместо природного газа эмиссия углекислого газа увеличивается в 1,7 раза. Таким образом, при замещении 15 млн. м3 (~18,5 млн. т у.т.) природного газа углём эмиссия СО2 увеличивается приблизительно на 30 млн. т СО2 в год, и при стоимости тонны предотвращенного выброса СО2 на уровне 20 долл. стоимость этого выброса составит порядка 600 млн. долл./год. Соответственно, при замещении углем 30 млн. м3 природного газа стоимость дополнительного выброса углекислого газа может составить 1200 млн. долл./год.

Особую сложность перехода российской энергетики на устойчивый путь развития, в соответствии с велением времени, вызывает необходимость одновременно решать далеко не простые задачи по разработке и внедрению новых ресурсосберегающих технологий с переориентацией энергетики на более широкое использование возобновляемых природных ресурсов.

Энергетический кризис (нехватка первичных энергоресурсов) миру не грозит, тем более России. «На Земле нет недостатка в энергии. Высокоэффективное использование менее загрязняющих и не исчерпывающих своей базы источников не только возможно, но и выгодно для удовлетворения нужд человека» [40]. И как писал академик Е.К. Фёдоров: «В ходе технического прогресса человечество в целом не только никогда не испытывало недостатка в энергетических ресурсах, но всегда находило новые, часто принципиально новые способы получения энергии, задолго до того, когда могли возникнуть ограничения, связанные с истощением известных ресурсов.»… «И вместе с тем проблема энергии может, с нашей точки зрения, создать серьёзные трудности, а может быть, и поставить границы для развития человечества на Земле. Не нехватка, а избыток энергии, расходуемой на планете, может привести к такой ситуации»

Введение в экологию энергетики