Решение контрольной работы по метематике Вычислить определенные интегралы Двойной интеграл ОДУ первого порядка Изменить порядок интегрирования в интеграле Вычислить криволинейный интеграл

Решение задач типового расчета по математике

Сферические координаты.

Отнесём теперь область интегрирования  к системе сферических координат . В этой системе координат положение точки M в пространстве определяется её расстоянием r от начала координат (длина радиуса-вектора точки), углом  между радиусом-вектором точки и осью Oz и углом  между  проекцией радиуса вектора точки на плоскость Oxy и осью Ox (рис. 6). При этом  может изменятся то 0 до а   - от 0  до .

                                    Рис.6

Связь между сферическими и декартовыми координатами легко устанавливается. Из рис.6 имеем

Отсюда

           (**)

Разобьем область  на частичные области , тремя системами координатных   поверхностей:            которыми будут

                

 соответственно сферы с центром в на­чале координат, полуплоскости, проходящие, через ось Оz, и конусы с вершиной в начале координат и с осями, совпада­ющими с одной из полуосей Оz. Частичными областями  служат «шестигранники» (рис. 7). От­бросив бесконечно малые высших порядков, будем рассматривать шестигранник MN как прямоу­гольный параллелепипед с изме­рениями, равными:  по направ­лению полярного радиуса,  по направлению меридиана,  по направлению параллели. Для элемента объема мы получим тогда выражение       

Заменив в тройном интеграле   по формулам (**) и взяв элемент объема равным полученному выражению, будем иметь

Особенно удобно применение сферических координат в случае, когда область интегрирование  - шар с центром в начале коор­динат или шаровое кольцо. Например, в последнем случае, если радиус внутреннего шара , а внешнего , пределы интегриро­вания следует расставить так:

Если  - шар, то нужно положить

A) Пример.

 Вычислим объем шара радиуса R. В этом случае подынтегральную функцию надо взять равной 1, и мы получим

Пример. Найдем центр тяжести однородного полушара

Если тело неоднородное, то в каждой формуле под знаком интеграла будет находиться дополнительный множитель  - плотность тела в точке P.

Объём цилиндрического тела. Двойной интеграл. Пусть в некоторой замкнутой области D плоскости хОу определена ограниченная функция z = f(x,у), причём f(x,y)>0. К определению двойного интеграла приходим, вычисляя объём фигуры, основание которой - область D; сверху фигура ограничена поверхностью, уравнение которой z=f(x,y) боковая поверхность - цилиндрическая, образованная прохождением прямой, параллельной оси Oz вдоль границы L области D. Такая фигура называется цилиндрическим телом (рисунок 1).

Если m, М - наименьшее и наибольшее значения непрерывной функции f(x,y) в области D, то справедливо двойное неравенство (оценка двойного интеграла):

 


Вычисление двойного интеграла в декартовых координатах