Решение контрольной работы по метематике Матричные уравнения Сложение матриц Эквивалентные матрицы Предел последовательности Вычислить пределы Неопределенный интеграл Определенный интеграл

Решение задач типового расчета по математике

Неопределенный интеграл. Табличное интегрирование.

Задания для подготовки к практическому занятию

Прочитайте лекции §16 и §17.1 и приведенные ниже примеры. Ответьте письменно на вопросы и решите задачи.

Выучите основную таблицу интегралов.

Примеры

1. Проверьте, верно ли найден интеграл:

Решение. Произвольное постоянное слагаемое С – непременный атрибут любого неопределенного интеграла. Чтобы проверить, верно ли найдена первообразная функция в правой части данного равенства, следует найти ее производную: >

.

Поскольку полученная производная не совпадает с подынтегральной функцией , значит, интеграл найден не верно.

(Заметим впрочем, что исправить ситуацию в данном случае легко, домножив правую часть данного равенства на : .)

 Вычислить интегралы:

2. ;  3. ; 4.; 5.

Решение:

2. Данный интеграл является табличным (№10) с точностью до постоянного множителя 2 перед х2:

3. Представим дробь под интегралом в виде суммы, разделив почленно числитель на знаменатель:

.

4. Чтобы свести данный интеграл к табличным, применим простые тригонометрические преобразования:

5. Интеграл отличается от табличного (№3) линейной заменой (5-3х вместо х). Воспользуемся правилом линейной замены (§17.1):

.

Замена переменной; интегрирование по частям

Интегрирование выражений, содержащих квадратный трехчлен

Интегрирование рациональных функций

С тригонометрическими интегралами мы уже встречались ранее. Их особенностью, пожалуй, можно считать обилие тригонометрических формул, позволяющих преобразовывать подынтегральное выражение, что часто позволяет его упростить. Способов такого преобразования, как и способов замены переменной в тригонометрическом интеграле обычно много, но для некоторых типов интегралов известны стандартные действия, приводящие к ответу наиболее коротким путем. Их описанию и посвящен рассматриваемый параграф лекций.



Тройной интеграл в декартовых координатах