Решение контрольной работы по метематике Вычислить определенные интегралы Двойной интеграл ОДУ первого порядка Изменить порядок интегрирования в интеграле Вычислить криволинейный интеграл

Решение задач типового расчета по математике

Декартовы координаты.

Пусть дан тройной интеграл от функции

причем область  отнесена к системе декартовых координат Oxyz, Разобьем область интегрирования и плоскостями, параллельными координатным плоскостям. Тогда частичными областями будут параллелепипеды с гранями, параллельными плоскостям Оху, Охz, Оуz. Элемент объема .будет равен, произведению дифференциалов переменных интегрирования

В соответствии с этим будем писать

Установим теперь правило для вычисления    такого интеграла.

Будем считать, что область интегрирования  имеет вид, изобра­женный на рис. 1).

Опишем около и цилиндрическую поверхность с образующей, перпендикулярной к плоскости Оху. Она касается области  вдоль некоторой линии L, которая делит поверхность, ограничивающую область, на две части: верхнюю и нижнюю. Уравнением нижней поверхности пусть будет , уравнением верхней .

Построенная цилиндрическая поверхность высекает из плоскости Оху плоскую область D, которая является ортогональной проек­цией пространственной области  на плоскость Оху, при этом линия L проектируется в границу области .

Будем производить интегрирование сначала по Направлению оси Оz. Для этого функция  интегрируется по заключен­ному в  отрезку прямой, параллельной оси Оz и проходящей через некоторую точку Р(х, у) области D (на рис. 1 отрезок  ). При данных х и у переменная интегрирования z будет изменяться от  - аппликаты точки «входа» ( )  прямой в область , до  -  аппликаты точки «выхода» ( ) прямой из области .

Результат интегрирования представляет собой величину, зави­сящую от точки Р (х, у); обозначим ее через F(х, у):

При интегрировании х и у рассматриваются здесь как постоян­ные.

Мы получим значение искомого тройного интеграла, если возьмем интеграл от функции F(х, у) при условии, что точка Р(х, у) изменяется по области D, т. е. если возьмем двойной интеграл

Таким образом, тройной интеграл I может быть представлен в виде

Приводя, далее, двойной интеграл по области D к повторному и интегрируя сначала по y, а затем по x, получим

    (*)

где и  - ординаты точек «входа» в область D и «выхо­да» из нее прямой  (в плоскости Оху), а a и b - абсциссы конечных точек интервала оси Ох, на который про­ектируется область D.

Мы видим, что вычис­ление тройного интеграла по области  производит­ся, посредством трех пос­ледовательных интегриро­вании.

Формула (*) сохраняет­ся и для областей, имею­щих цилиндрическую фор­му, т. е. ограниченных цилиндрической поверхно­стью с образующими, параллельными оси Оz, а сни­зу и сверху поверхностями, уравнения которых соответственно  и   (рис. 2).

                           Рис.2

Если областью интегрирования служит внутренность парал­лелепипеда с гранями, параллельными координатным плоскостям (рис. 3), то пределы интегрирования постоянны во всех трех .интегралах :

В этом случае интегрирование можно производить в любом порядке, пределы интегрирования будут при этом сохраняться.

Делаем вывод о наличии односторонней вертикальной асимптоты x = 1. Переходим к изучению поведения функции при x®¥.

Масса неоднородного тела. Тройной интеграл. Рассмотрим тело, занимающее пространственную область , и предположим, что плотность распределения массы в этом теле является непрерывной функцией координат точек тела:

Установим теперь правило для вычисления    такого интеграла. Если же в общем случае менять порядок интегрирования ( т.е., скажем, интегрировать сначала по направлению оси Oy, а затем по области плоскости Oxz), то это приведёт к изменению порядка интегрирования в тройном интеграле и к изменению пределов интегрирования по каждой переменной.

 


Вычисление двойного интеграла в декартовых координатах