Решение контрольной работы по метематике Вычислить определенные интегралы Двойной интеграл ОДУ первого порядка Изменить порядок интегрирования в интеграле Вычислить криволинейный интеграл

Решение задач типового расчета по математике

Определенный интеграл

1. Вычисление определенного интеграла

Пример 9. Вычислить интеграл .

Решение. Для того, чтобы вычислить данный интеграл, воспользуемся основной тригонометрической заменой:

 

Бесконечно большие функции, их свойства и связь с бесконечно малыми функциями

Так как данный интеграл является определенным, то при замене переменной , меняются пределы интегрирования:

.

На отрезке  по переменной t функция  непрерывно дифференцируема, монотонна и в границах его принимает значения границ отрезка  по переменной x. Следовательно, выбранная замена переменной правомерна. Получаем:

.

Вычислить несобственный интеграл  или установить его расходимость.


Вычисление двойного интеграла в декартовых координатах