Решение контрольной работы по метематике Матричные уравнения Сложение матриц Эквивалентные матрицы Предел последовательности Вычислить пределы Неопределенный интеграл Определенный интеграл

Решение задач типового расчета по математике

ЗАДАНИЕ 9. Найти массу пластинки

():  ,

Плотность массы пластинки 

РЕШЕНИЕ.

 Область () – это часть эллиптического кольца (на рис.78 область () заштрихована). Массу плоской области можно вычислить по формуле

.

Подставляя заданную плотность  в двойной интеграл, для массы получим

.

Рис.78

 Очевидно, что область  () не является ни -, ни - трапецией; при вычислении двойного интеграла в декартовой системе координат область () пришлось бы разбить на три области. Как для областей, заключенных между концентрическими окружностями с центром в начале координат “родной” является полярная система координат, так и для эллиптических колец “своей “ является эллиптическая система координат (обобщенная полярная система координат)

.

Выбор  обусловлен соображениями удобства при вычислении интегралов. Положим для заданной области :

.

Якобиан преобразования вычисляется по формуле .

Совершим преобразование области  (): уравнение эллипса  перейдет в , т.е.   эллипс преобразуется в

окружность радиуса 1; эллипс  переходит в окружность ; прямая   в луч , прямая   в луч  (действительно,  и ). Запишем двойной интеграл в обобщенной полярной системе координат:

.

В данном случае повторный интеграл есть произведение двух определенных интегралов, так как внутренний интеграл по  есть скаляр. Вычислим их:

;

.

Таким образом, .

Ответ. Масса пластинки равна 1.



С доставкой купить вышку туру улт в москве Тройной интеграл в декартовых координатах