Решение контрольной работы по метематике Исследовать поведение функции Найти интеграл Площадь плоской криволинейной трапеции Вычисление длины дуги кривой Декартовы координаты Сферические координаты

Решение задач типового расчета по математике

Задача 2. Используя тройной интеграл в цилиндрической системе координат, вычислить массу кругового цилиндра, нижнее основание которого лежит в плоскости xOy, а ось симметрии совпадает с осью Oz, если заданы радиус основания R = 0,5, высота цилиндра H = 2 и функция плотности , где r – полярный радиус точки.

Решение.

  Массу кругового цилиндра можно вычислить, используя тройной интеграл по области V, по формуле (12):

,

где – функция плотности, а V – область, соответствующая цилиндру.

Переходя к трехкратному интегралу в цилиндрических координатах, получаем:

,

где область интегрирования V (круговой цилиндр) можно задать системой неравенств:  при R = 0,5 и H = 2

Для определения массы цилиндра нужно вычислить трехкратный интеграл:

.

Вычислим внутренний интеграл по переменной z: .

Затем находим интеграл по переменной r:

 Третий этап – вычисление внешнего интеграла по переменной φ:

.

Ответ:  ед. массы.

Составленный криволинейный интеграл сводим к определенному интегралу, используя параметрические уравнения кривой ВС:

Задача 4. Задан радиус-вектор движущейся точки: . Найти векторы скорости и ускорения движения этой точки через 2 минуты после начала движения.

Задача 6. Проверить, является ли векторное поле силы  потенциальным или соленоидальным. В случае потенциальности поля найти его потенциал и вычислить с помощью потенциала работу силы  при перемещении единичной массы из точки M(0,1,0) в точку N(–1,2,3).

 


Тройной интеграл в цилиндрических и сферических координатах