Решение контрольной работы по метематике Исследовать поведение функции Найти интеграл Площадь плоской криволинейной трапеции Вычисление длины дуги кривой Декартовы координаты Сферические координаты

Решение задач типового расчета по математике

Экстремумы ФНП

Локальные максимумы и минимумы ФНП

Говорят, что функция z = f (x, y) имеет локальный максимум в точке (x0, y0), если существует окрестность точки (x0, y0), в которой выполнено неравенство f (x0, y0) > f (x, y) для всех точек (x, y) из этой окрестности, отличных от (x0, y0): .

Если же f (x0, y0) < f (x, y) для всех точек (x, y) из некоторой окрестности точки (x0, y0), отличных от (x0, y0), то функция z имеет локальный минимум ФНП в точке (x0, y0): .

Максимум  и минимум  называют локальными экстремумами ФНП.

Необходимое условие экстремума ФНП: если функция z = f (x, y) имеет экстремум в точке (x0, y0), то каждая частная производная первого порядка функции z в точке (x0, y0) либо равна нулю, либо не существует.

Необходимое условие не является достаточным. Точки из ООФ, в которых необходимое условие выполнено, называются критическими точками функции, или точками, подозрительными на экстремум.

Если (x0, y0) – это такая критическая точка, в которой  и , то она называется ещё стационарной точкой функции f (x, y).

Нахождение наибольшего и наименьшего значений ФНП в замкнутой области

Область D называется замкнутой областью, если она включает в себя свою границу, и открытой областью, если не включает свою границу.

По свойствам непрерывных функций, непрерывная ФНП z = f (x, y) в замкнутой ограниченной области DxOy достигает своих наибольшего и наименьшего значений zнаиб = М. и zнаим = m, называемых глобальными экстремумами ФНП в области D. Эти значения zнаиб. и zнаим. достигаются или в точках локальных экстремумов функции z = f (x, y) внутри области D или на границе этой области.

Чтобы найти наибольшее и наименьшее значения дифференцируемой ФНП в замкнутой ограниченной области D, нужно:

найти все стационарные точки функции f (x, y), лежащие внутри области D, и вычислить в них значения функции;

найти наибольшее и наименьшее значения функции на границе области;

выбрать среди всех найденных значений наибольшее и наименьшее значения функции в области D.

Поскольку на границе области аргументы x и y связаны между собой уравнением границы, то граничное значение функции f (x, y) является функцией одной переменной, и ее исследование проводят по правилам нахождения наибольшего и наименьшего значений функции одной переменной на замкнутом промежутке.

Если граница области D является кусочно-заданной, то необходимо исследовать граничное значение функции f (x, y) отдельно на каждом участке границы.

Касательная плоскость и нормаль к поверхности

Функции комплексной переменной Определение и свойства функции комплексной переменной

Дифференцирование ФКП. Аналитические ФКП Производной от функции комплексной переменной w = f (z) в точке z0 называется предел:

 


Тройной интеграл в цилиндрических и сферических координатах