Тонкая клиенткая сеть Идентификация пользователей по имени Серверные Web приложения Репликация данных Беспроводные сети


Локальные компьютерные сети

Разработка  плана восстановления после аварии. Архивирование важный, но не единственный аспект подготовки к восстановлению после аварии. Оно составляет только часть общего плана План восстановления после аварии представляет собой подробный документ, описывающий процесс восстановления работоспособности предприятия после какойлибо катастрофы. Очень важно создать план в письменной форме. В таком случае можно проинструктировать конкретных исполнителей даже в отсутствие разработчика плана. План должен быть настолько подробен, насколько это возможно, тогда для выполнения восстановительных работ не обязательно приглашать эксперта:

Содержание плана восстановления Детальное содержание плана зависит от конструкции конкретной сети. Однако, как правило, план восстановления после аварии содержит следующее.

Пример плана восстановления сети. Вы еще не знаете, насколько детальным должен быть план восстанов ления после аварии?

Концепция организации сетей и сетевые компоненты Совместное использование файла с помощью сети отнюдь не означает автоматический доступ к нему любого пользователя. В современных опе рационных системах вы можете ограничить доступ к общим файлам или каталогам. С этой целью используют либо систему паролей, либо учетные записи пользователя. Эти средства предусматривают весьма точную на стройку, обеспечивая различные уровни доступа к файлам — от мини мального, допускающего только чтение, до полного доступа. Таким образом, вы можете, например, запретить другим пользователям просматривать вашу работу либо просто не позволять вносить в нее изменения, если это нежелательно.

Совместное использование периферийных устройств Первые персональные компьютеры представляли собой, по сути, пус тые ящики, в которых находились всего лишь системная плата, память и дисковод. Даже жесткий диск считался дополнительным оборудованием. Так было десять лет назад. Однако по мере совершенствования компьютеров все большее число устройств, до того считавшихся дорогостоящим допол нительным оборудованием, становились частью стандартного профиля аппаратных средств. По мере того, как все большее число устройств начинало входить в стандартную комплектацию компьютера, возникала своеобразная проблема: какие же устройства следует считать периферийными, а какие — нет. Например, принтер — безусловно, периферийное устройство, но к чему отнести привод компактдисков? А жесткий диск?

Сетевые платы (NICs) можно разделить на различные категории по нескольким признакам. Первый признак: платы различают по типу поддерживаемых сетей. На практике обычно используют два типа локальных сетей: Ethernet и Token Ring. Различия сетей обоих типов подробнее обсуждаются в следующей лекции "Планирование сетевой архитектуры". Пока что достаточно сказать, что сети этих двух типов различаются методами установления связи. Вы не можете заставить "разговаривать" платы Ethernet и Token Ring без помощи некоторых сетевых устройств, рассматриваемых далее в лекции "Дополнительное сетевое оборудование".

Помехи и затухание Хотя помехи и затухание одинаково влияют на передачу данных, это совершенно разные явления.

Коаксиальные кабели часто называют кабелями BNC, сеть на их основе называют "тонкой" сетью (Thinnet). Они состоят из центрального медного проводника, заключенного в изоляционную оболочку, покрытого слоем алюминиевой или медной оплетки, которая защищает проводник от RF помех. Коаксиальный кабель состоит из четырех частей

Репликация данных

Если же простой системы абсолютно недопустим, можно применить один из двух методов. Первый заключается в кластеризации серверов (clustering) (см. следующий раздел), а второй — в репликации данных. Репликацией называют копирование данных и их структуры с одного сервера на другой. Это весьма популярный метод, используемый для обеспечения целостности и распределения данных (data load) между несколькими сер верами. Сначала данные записывают на один из серверов (называемый в сетях Windows NT сервером экспорта (export server)), а затем копируют на другой сервер {сервер импорта (import server)). Для выравнивание нагрузки между серверами обслуживания клиентов (client load) вы можете установить связи между ними с режимом ручного разделения или же использовать ре жим автоматического разделения.

Как правило, реплицируют данные двух типов: те, которые ни в коем случае не должны быть утрачены и те, для которых полезно выравнивание нагрузки. Изза ограниченной полосы пропускания сети, репликацию редко используют для защиты обычных данных. Это обусловлено тем, что копирование каждого изменения данных на крупный файловый сервер может занять всю полосу пропускания, необходимую для решения остальных задач. Для защиты файлов данных можно использовать RAIDмассивы. Тем не менее, репликация — весьма эффективный метод защиты баз данных или иной жизненно важной информации, например информации об установленных соответствиях (mappings) сервера WINS или каталога со сценариями входа. Таким образом, вместо обслуживания всех запросов клиентов с центрального сервера репликация позволяет распределить эту работу по нескольким серверам и одновременно гарантировать существо вание избыточного числа копий базы данных.

Кластеризация серверов

Кластеризация в некотором смысле напоминает RAIDсистему, однако она более совершенна. Для обеспечения отказоустойчивости и повышения производительности в методе кластеризации вместо создания массивов RAID применяется создание массивов серверов.

Кластеризация реализуется разными методами, которые отличаются как функциональными средствами, так и технологиями связывания и взаимодействия серверов. В функциональном отношении кластеры подразделяются на три основных типа.

• Активный/активный.

• Активный/резервный (standby).

• Отказоустойчивый.

В принципе, ту или иную поддержку отказоустойчивости обеспечивают кластеры любого типа, однако ее уровень и скорость, с которой функции отказавшего сервера передаются другому, зависят от типа кластера.

В кластере типа активный/активный все серверы непрерывно функ ционируют и обслуживают пользователей. При отказе любого сервера остальные серверы (или сервер) продолжают управлять своей рабочей нагрузкой и, кроме того, принимают на себя рабочую нагрузку отказавшего. На передачу нагрузки отказавшего сервера остальным серверам кластера уходит 15—90 с. В кластере типа активный/резервный один из серверов обслуживает запросы пользователей либо выполняет иные задачи, а второй ждет отказа этого сервера. Это отнюдь не уменьшает время восстановления после сбоя (failover time): при отказе первого сервера для передачи его рабочей нагрузки второму попрежнему необходимо 15—90 с. (При передаче рабочей нагрузки резервному серверу все соединения и сеансы, исполняемые им, завершаются.)

Отказоустойчивые кластеры проектируют так, чтобы их годичный простой не превышал 6 мин. Эти кластеры отличаются от кластеров типа активный/ активный и активный/резервный. В отказоустойчивом кластере все серверы идентичны и работают в связках, выполняя абсолютно одинаковые операции. Таким образом, при отказе одного сервера, его нагрузка фактически мгновенно подхватывается остальными серверами. Отказоустойчивые кластеры исполь зуют ресурсы менее эффективно, чем кластеры типа активный/активный или активный/резервный, однако при отказе одного из серверов отказо устойчивые кластеры обеспечивают практически бесперебойную работу. Кластеры других типов, напротив, могут прекратить работу на время до полутора минут, а чтобы исказить операцию записи достаточно даже 15 с. Сравнительные характеристики этих трех типов кластеров приведены в табл. 4.

Тип кластера позволяет определить, создан ли кластер для обеспечения отказоустойчивости или повышения производительности, а также метод распределения рабочей нагрузки между серверами, входящими в кластер. Кластерные продукты различаются применяемой технологией совместного использования данных, методом соединения серверов кластера, а также степенью гибкости поддержки различных аппаратных средств. Кроме того, продукты различаются количеством серверов, из которых образован единый кластер. Так, некоторые продукты поддерживают кластер, содержащий не более двух серверов — первичный и вторичный. Более дорогостоящие продукты поддерживают большее число кластеров.

 Таблица 4.

 Сравнение типов кластеров

Активный/

Активный/

Отказоустойчивый

активный

резервный

Функции пер

Различаются

Различаются

Идентичны (с целью

вичного/вто

обеспечения пол

ричного сервера

ной избыточности)

Влияние на вто

Принимает на

Сбрасывает собст

Не влияет, посколь

ричный сервер

себя рабочую

венную рабочую

ку оба сервера пе

при отказе пер

нагрузку пер

нагрузку и прини

ред отказом испол

вичного

вичного сер

мает нагрузку пер

няют одну и ту же

вера

вичного сервера

работу

Требуется ли

Нет

Нет

Да

идентичность

дисковых сис

тем?

Время восста

1590 с

1590 с

<1 с

новления рабо

тоспособности

Для организации совместного использования данных в кластерах при меняют репликацию, коммутацию (switching) или зеркальное отображение (mirroring). При репликации данные, записанные на жесткий диск первичного сервера, реплицируются через сетевое соединение между серверами на диск вторичного сервера. При коммутации каждый компонент кластера содержит собственный диск, однако все диски соединены одной шиной SCSI, с тем чтобы при отказе диска первичного сервера, его нагрузку принял на себя диск вторичного. Принцип зеркального отображения описан ранее, в разделе "Использование массивов RAID". В этом случае данные одновре менно записываются на диски как первичного, так и вторичного серверов.

Кроме того, в каждом продукте предусмотрено различное физическое соединение компонентов кластера. Иногда серверы кластера соединяют между собой обычным сетевым соединением, скажем, Ethernet; иногда — через соответствующие разъемы. Возможны и другие решения, скажем, фабрика коммутируемых соединений (switched fabric connection) — если они поддерживаются конкретным программным продуктом.

Точно так же и аппаратные средства разных типов отличаются степенью гибкости. Некоторые программы обслуживания кластеров могут работать только с вполне определенными типами оборудования. Это очень неудачное решение. Лучше использовать продукты, поддерживающие любые два сервера, а еще лучше — те, которые поддерживают серверы, работающие на разных платформах (например, один сервер на базе х.86, второй — Alpha). Отметим, что гибкость подобного рода не относится к отказоустойчивым кластерам: все серверы, входящие в них, должны быть идентичны.

Волоконно-оптические передающие среды

Преимущества волокна

Волоконно-оптические коммуникации имеют ряд преимуществ по сравнению с электронными системами, использующими передающие среды на металлической основе.

В волоконно-оптических системах передаваемые сигналы не искажаются ни одной из форм внешних электронных, магнитных или радиочастотных помех. Таким образом, оптические кабели полностью невосприимчивы к помехам, вызываемым молниями или источниками высокого напряжения. Более того, оптическое волокно не испускает излучения, что делает его идеальным для соответствия требованиям современных стандартов к компьютерным приложениям. Вследствие того, что оптические сигналы не требуют наличия системы заземления, передатчик и приемник электрически изолированы друг от друга и свободны от проблем, связанных с возникновением паразитных токовых петель.

При отсутствии сдвига потенциалов в системе заземления между двумя терминалами, исключающим искрения или электрические разряды, волоконная оптика становится все более предпочтительным выбором для реализации многих приложений, когда требованием является безопасная работа в детонирующих или воспламеняющихся средах.

Цифровые вычислительные системы, телефония и видео-вещательные системы требуют новых направлений для улучшения передающих характеристик. Большая ширина спектра оптического кабеля означает повышение емкости канала. Кроме того, более длинные отрезки кабеля требуют меньшего количества репитеров, так как волоконно-оптические кабели обладают чрезвычайно низкими уровнями затухания. Это свойство идеально подходит для широковещательных и телекоммуникационных систем.

По сравнению с обычными коаксиальными кабелями с равной пропускной способностью, меньший диаметр и вес волоконно-оптических кабелей означает сравнительно более легкий монтаж, особенно в заполненных трассах. 300 метров одноволоконного кабеля весят около 2,5 кг. 300 метров аналогичного коаксиального кабеля весят 32 кг - приблизительно в 13 раз больше.

Электронные методы подслушивания основаны на электромагнитном мониторинге. Волоконно-оптические системы невосприимчивы к подобной технике. Для снятия данных к ним нужно подключиться физически, что снижает уровень сигнала и повышает уровень ошибок - оба явления легко и быстро обнаруживаются.


На главную