Методика расчёта линейных электрических цепей переменного тока Метод активных и реактивных составляющих токов Метод узловых и контурных уравнений Расчёт трёхфазной цепи


Методика расчета электрических цепей

Граф и схема электрической цепи с шестью ветвями представлены на рис.5 и рис. 6 соответственно. Здесь обозначения узлов на топосхеме обведены.

Рис.5. Граф заданной цепи  Рис.6. Схема электрическая принципиальная цепи

По данным варианта, выписанным из таблиц 1 и 2, сформируем векторы параметров пассивных элементов ветвей, причем при отсутствии в ветви резистора или катушки индук­тивности в соответствующих строках векторов R и L ставим «О», а если в ветви нет кон­денсатора, то в строке вектора С ставим число «0200». Принцип работы однофазных трансформаторов

 Отсюда выделяем первые элементы для массивов из шести ветвей. Тогда

R:= L:=  C:= Частота источника с учетом частотного коэффициента а=0,9: f=63 Гц, соответственно период Т=0,016 с., круговая частота =395,841 рад/с.

Амплитуды и начальные фазы источника соответственно:Em:=85 B, =1200 –ЭДС первой ветви; Jm:=5,5 A, := 300 – источника тока, включенного параллельно резистору пятой ветви.

Выходные характеристики всех этих источников электропитания весьма различны и, как правило, нелинейные. Виной этому являются внутренние процессы, совершаемые сторонними силами против электрических сил и, одновременно, электрическими силами против сторонних сил, т.е. мы имеем дело с преобразованием сторонней энергии в электрическую.
Поэтому в электрических схемах любой источник можно представить в виде комбинации идеального источника (в котором действуют только сторонние силы) и внутреннего импеданса (учёт работы против сторонних сил) Z реального источника.
Используются 2 вида идеальных источников
" источник э.д.с - у которого выходное напряжение не зависит от выходного тока;
" источник тока - у которого выходной ток не зависит от выходного напряжения.
Можно сказать, что у идеального источника э.д.с нулевое внутреннее сопротивление, а у источника тока - нулевая внутренняя проводимость. Соответственно, реальные внутренние сопротивления будут подключаться к идеальным источникам - последовательно к источнику э.д.с и параллельно к источнику тока.

Промышленная электроника

Полупроводниковые приборы Электроника – это наука, изучающая принципы построения, работы и применения различных электронных приборов. Именно применение электронных приборов позволяет построить устройства, обладающие полезными для практических целей функциями – усиление электрических сигналов, передачу и прием информации (звук, текст, изображение), измерение параметров, и т.д.

Электронно-дырочный переход. Основные параметры

При обратном включении Р-n перехода (минус к Р области, плюс к n области) запирающий слой расширяется

Биполярные транзисторы. Транзисторы - это электронные приборы, предназначенные для усиления и преобразования сигналов. Наиболее распространены транзисторы с двумя р-п переходами и тремя выводами. Их называют биполярными, так как в работе используются носители обоих знаков.

Полевые транзисторы Биполярные транзисторы нашли широкое применение в электронике, но они имеют существенные недостатки. Недостатки обусловлены двумя факторами. Во-первых, активный режим работы предполагает, что эмиттерный переход транзистора открыт и его сопротивление мало. Поэтому такой прибор потребляет заметную мощность от источника входного сигнала. Во вторых, участие в работе транзистора носителей зарядов двух знаков обуславливает высокий уровень внутренних шумов из-за самопроизвольных рекомбинаций в объеме эмиттера и коллектора. От этих недостатков свободны полевые транзисторы. Величина тока этого транзистора управляется электрическим полем закрытого р-n перехода. Поэтому такой прибор практически не потребляет ток из входной цепи.

Тиристор – это полупроводниковый прибор, способный под действием сигнала переходить из закрытого состояния в открытое. Благодаря этому свойству тиристоры применяются в цепях коммутации высоких мощностей и импульсных схемах информационной электроники.



На главную