Методика расчёта линейных электрических цепей переменного тока Метод активных и реактивных составляющих токов Метод узловых и контурных уравнений Расчёт трёхфазной цепи


Методика расчета электрических цепей

Метод узловых и контурных уравнений

Составляем из заданных электроприёмников цепь с двумя узлами, как это показано на рисунке 3.3. Комплексная схема замещения такой цепи показана на рисунке 3.4.

 Сущность метода состоит в составлении системы уравнений по первому и второму законам Кирхгофа. Расчёт производим в следующем порядке.

Комплексный метод расчета цепей синусоидального тока Широкое распространение на практике получил метод расчета цепей синусоидального тока, который принято называть комплексным. Сущность метода состоит в том, что синусоидальные токи, напряжения и ЭДС изображаются комплексными числами, а геометрические операции над векторами заменяются алгебраическими операциями над комплексными числами. Этот метод позволяет рассчитывать цепи синусоидального тока алгебраически аналогично цепям постоянного тока.

По первому закону составляем (n – 1) независимых уравнений, где n – количество узлов в схеме. Выбираем узел А.. По второму закону нам остаётся составить два уравнения, так как число уравнений в системе должно быть равно количеству неизвестных токов, а их три. Направления токов в ветвях выбираются произвольно. Направления обхода контуров принимаем (услов- но) по часовой стрелке. Таким образом, система уравнений в комплексной форме включает в себя одно уравнение, составленное по первому закону Кирхгофа и два уравнения, составленные по второму закону:

 I1 + I2 – I3 = 0;

  I1Z1 – I2Z2 = E1 – E2;

 I2Z2 + I3Z3 = E2.

 Рис. 3.3 Рис. 3.4 Мощность периодических несинусоидальных токов Для определения активной мощности, выделяемой на активных элементах, воспользуемся формулой мгновенной мощности p = iu, где i и u заданы рядом Фурье.

Подставляем заданные комплексы известных величин:

I1 + I2 – I3 = 0 (1);

I1 * (2 – j3) – I2 * (14 – j12) = 100 – 65 (2);

  I2 * (14 – j12) + I3 * j18 = 65 (3).

Данную систему легче решить с помощью простых подстановок: из (2) определяем I1, из (3) определяем I3:

I1 + I2 – I3 = 0;

I1 = (35+I2*(14-j12))/(2-j3) = 5,38 + j8,08+I2*(4,92+j1,38) (4); 

I3 = (65-I2*(14-j12))/j18 = –j3.61 – I2*(–0,667 – j0,778) (5).

Подставляем (4) и (5) в (1) и получим:

5,38 + j8,08 + I2*(4,92 + j1,38) + I2 + j3,61 + I2* (0,667 – j0,778) = 0;

5,38 + j8,08 + j3,61 = I2 * (–4,92 – j1,38 – 1 + 0,667 + j0,0778);

5,38 +j11,68 = I2 * (–5,253 – j0,602), отсюда

I2 =(5.38+j11.68)/(-5.253-j0.602) = –1,26 – j2,08 = 2,438e-j121,21 A;

I1 = 5,38 + j8,08 + (–1,26 – j2,08) * (4,92 + j1,38) = 2,05 – j3,89 = =4,4 *  A.

 I3 = –3,61 – (–1,26 – j2,08)*(–0,667 – j0,778) = 0,778 – j5,97 =

=6.02 *   A.

Составляем уравнение баланса мощностей в заданной электрической цепи. Определяем комплексные мощности источников:

SE1 = E1*= 100 * (2,05 + j3,89) = 205 + j389 = 440 * *В*A.;

SE2 = E2*= 65 * (–1,26 + j2,08) = –81,9 + j135 = 158 *B*A.

Определяем комплексные мощности приёмников электрической энергии:

 S1 = I12 * Z1 = 4,42 * (2 – j3) = 38,7 – j58,1  B*A;

 S2 = I22 * Z2 = 2,432 * (14 – j12) = 82,7 – j70,8 B*A;

 S3 = I32 * Z3 = 6,022 * (j18) = j652 B*A.

Уравнение баланса комплексных мощностей!

SЕ1 + SE2 = S1 + S2 + S3;

205 + j389 – 81,9 + j135 = 38,7 – j58,1 + 82,7 – j70,8 + j652;

 123,1 + j524 = 121,4 + j523, или

 538,3 *  = 536,9 * .

 Относительная погрешность в балансе полных мощностей составит:

YS = (538.3-536.9) * 100%/538.3 = 0,28% < 2%.


Угловая погрешность также незначительна.

Рисунок 3.5

 Для построения векторной диаграммы задаёмся масштабами токов MI = 1 А/см и э.д.с. ME = 10 В/см.

Векторная диаграмма в комплексной плоскости построена на рисунке 3.5.

Представление синусоидального тока (напряжения) радиус - вектором. При анализе состояния электрических цепей переменного тока возникает необходимость вычисления суммы или разности колебаний одинаковых частот, но с разными амплитудами и начальными фазами. Решать такую задачу с помощью рассмотренной формы представления (т.е. с помощью тригонометрических функций) достаточно трудно.

Комплексное представление синусоидальных токов и напряжений позволяет совместить простоту и наглядность векторного представления с точностью представления действительными функциями времени

Комплексное сопротивление и проводимости элементов электрических цепей

Энергетические характеристики электрических цепей синусоидального тока

Проведем сложение векторов

Выражение мощности в комплексной форме Широкое применение комплексного представления тока и напряжения в процессе анализа электрических цепей предполагает найти комплексное представление для активной, реактивной и полной мощности. На первый взгляд эта задача не должна вызывать затруднений. Достаточно в выражение для мощности подставить комплексные ток и напряжение.

Резонансные свойства электрических цепей синусоидального тока Еще раз подчеркнем замечательную особенность цепи в режиме резонанса. Токи протекающие в ветвях реактивных элементов могут принимать значения в десятки и сотни раз больше общего тока цепи.

Поэтому резонанс цепи называют резонансом токов. Очень важно и то, что они противофазны

 Для того чтобы показать, как рассчитывать цепь методом упрощения схем, предположим, что в источнике с э.д.с. E1 произошло короткое замыкание между зажимами, то есть E1 = 0.

Если конфигурация данной совокупности меняется, то в добавление к электрическим силам возникают магнитные силы, FM (x,y,z,t).
И в этом проявляется дуальность электрических и магнитных полей - одно постоянно порождает другое. Поэтому и говорят об электромагнитном поле или взаимодействии..
Электрические и магнитные (электромагнитные) силы могут совершать работу, перемещая (изменяя вектор скорости) заряженные частицы. Эта работа может быть механической - совершённой против механических сил, удерживающих данные частицы, а также электромагнитной - совершённой по изменению конфигурации электромагнитного поля.
Возможность совершения этой работы электромагнитными силами будем называть энергией электромагнитного поля. Таким образом, электромагнитная энергия может превращаться в механическую энергию (движение, тепло, свет и т.п.) - активная энергия, а также оставаться в собственном виде, но с изменением конфигурации поля - реактивная энергия. Соответственно, полная мощность действия электромагнитного поля равна сумме активной мощности и реактивной мощности.
S= Р+ Q
Электрическое поле вызывает смещение заряженных частиц, т.е. электрическая энергия переходит в магнитную энергию. Но магнитная энергия вызывает новое распределение электрического поля, т.е. меняет его энергию. И магнитная энергия таким образом переходит в электрическую. И этот дуальный процесс бесконечен, пока существует реактивная энергия, которая является источником электромагнитных колебаний и, соответственно, электромагнитных волн. Поскольку электромагнитное взаимодействие является дальнодействующим (см. Закон Кулона), то мы можем ощущать эти электромагнитные колебания (волны) на сколь угодно большом удалении от нашего "волнующегося флюида".


На главную